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Abstract Based on the equilibrium method of plasticity, the
theoretical explanation of the bearing strengths of locally
loaded timber blocks is given in the Appendices. The result
of the numerical construction of the slip-lines can precisely
be represented by an analytical function of a logarithmic
spiral that can be shown to be the exact solution. This func-
tion in one variable can be given in the power law form
leading to a theoretical and experimental value of that power
of 0.5.

This power representation of the stress spreading model
of the strength increase, by confined dilatation, provides
simple rules for the code and a simple design method that
precisely matches to the data in all circumstances and load-
ing cases and explains the apparent contradictory test results
of Suenson, the Eurocode, the French rules, Graf, Korin and
Augustin et al. and, as shown before, explains other com-
parable loading cases as e.g. by pin dowel connections (see
literature).

Bestimmung der Querdruckfestigkeit von Holz
bei Schwellendruck

Zusammenfassung In den Anhängen wird auf Grundlage
des Traglastverfahrens die Erklärung für die Querdruck-
festigkeit von Holz bei Schwellendruck theoretisch her-
geleitet. Die numerisch hergeleiteten Gleitlinien können
analytisch als Funktion einer logarithmischen Spirale be-
schrieben werden. Es lässt sich zeigen, dass dies eine
exakte Lösung darstellt. Diese Funktion mit einer Variablen
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kann als Exponentialfunktion beschrieben werden, wobei
sich der Exponent theoretisch und experimentell zu 0,5
ergibt.

Dieses Modell der Festigkeitssteigerung und Spannungs-
verteilung durch begrenzte Dilatation erlaubt eine einfache
Normierung und liefert einfache Berechnungsregeln, die in
allen Fällen und Belastungsarten genau mit den experi-
mentellen Daten übereinstimmen, und die scheinbar wider-
sprüchlichen Versuchsergebnisse von Suenson, des Euro-
codes, der französischen Regeln, von Graf, Korin und Augu-
stin et al. sowie andere vergleichbare Belastungsarten, wie
zum Beispiel bei Stabdübelverbindungen (siehe Literatur),
erklären.

1 Introduction

Because of the revived attention to the bearing strength of
timber beams and the proposal of design rules for the Euro-
code 5, it is necessary to regard the theoretical explanation
of the bearing strength of supports as the right basis of
design only. This theory of the strength of locally loaded
blocks completed here was developed by the author long
ago and has been applied in many reports of the Stevin Lab-
oratory like e.g. in van der Put (1988), where it was shown to
be the only possible theory to explain the very high embed-
ding strength of particle boards in compression and the very
high embedding strength of nailed particle boards to wood
connections. The theory is also discussed in CIB-papers,
e.g. in van der Put (1988) and van der Put (1991), and in an
internal report for the CIB-Stability Committee and more re-
cently in van der Put and Leijten (2000), where it was shown
to fully and precisely explain the data of Ballerini (1999)
and the Karlsruhe data of joints with one and two dowels
(van der Put and Leijten 2000).
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The theoretical derivations in the Appendices result in
Eq. 1 which provide a simple design rule being able to
explain all mutual strongly different empirical results, as
discussed in the following. It can be seen that the meas-
urements are close to the low flow strain prediction of the
theory with a spreading slope of 45◦, giving a very good
explanation of the data with different configurations.

The given design rules for bearing blocks do not ap-
ply for support stresses in continuous beams because the
shear strength is also a determining factor. For the combined
stresses in the beam, the failure criterion of van der Put
(1982) has to be applied as is shown in van der Put (2006a).
This will be discussed in a following article.

2 Bearing strength perpendicular to the grain
of locally loaded blocks

The local compression strength perpendicular to the grain
may increase due to confined dilatation perpendicular to the
loading direction. This is explained in Appendix A by the
equilibrium method of the theory of plasticity. As derived,
the increase of strength is proportional to

√
L/s according to

Eq. 1:

fc,s = c fc,90

√
L/s ≈ fc,90

√
L/s . (1)

The definition of L and s is given in Figs. 5–7. The strength
values fc,s are the top-values of the measured curves of
Fig. 1. The cube strength fc,90 at the top of curve “a” at
15% strain is here 3.6 MPa. The measured maximal strength
values, given in Table 1, are precisely according to the
theory.

Figure 1 shows the strength increase with increasing pos-
sibility of spreading of the load. It further shows that there
is a maximal spreading of about 4H because the strength
of specimen “e” with L = 5s = 5H is as strong as speci-
men “d” with L = 4s = 4H . The definition of L, s and H
is given in Figs. 5–7. Thus, the maximal spreading-length
is 4H , or better: 3H + s. Because s = H , the spreading is
3H , thus 2 times 1.5H of both sides. Thus, L = 2 ·1.5H +
s = 3H + H = 4H . The spreading is 1.5 : 1, as is applied in
Fig. 6. The same maximal value of the spreading slope of
1.5 : 1 also follows from other investigations like e.g. of the
French design rules (see Table 2) where for higher values

Curve L/s
√

L/s fc,90 Theory Measurements Ultimate
(MPa) fc,s = 1.1 fc,90

√
L/s fc,s strain

(MPa) (MPa)

a 1 1 3.63 1.1 fc,90 = 4.0 15%
b 2

√
2 5.6 5.5 5.5%

c 3
√

3 6.9 6.95 13%
d 4

√
4 8.0 8.0 15%

e 5
√

5 limit ≈ as curve “d” 8.3 10%

Table 1 Bearing strengths
perpendicular to the grain of
locally loaded blocks
Tabelle 1 Querdruckfestigkeit
bei Schwellendruck

Fig. 1 Bearing strength fc,s perpendicular to the grain. Specimen 150
× 150 mm2, lengths: L = 150, 300, 450, 600, 750 mm, of curves a to
e with s = 150 mm, according to the data of Suenson in Kollmann
(1984)
Abb. 1 Querdruckfestigkeit fc,s, Probenquerschnitt 150 × 150 mm2,
Probenlänge L = 150, 300, 450, 600, 750 mm; mit jeweils s =
150 mm, gemäß den Daten von Suenson in Kollmann (1984)

of “a”, above a/H ≥ 1.5, there is also no strength increase.
When the ultimate state is chosen at a small plastic defor-
mation, as is often done, the spreading slope is close to 1 : 1
of the elastic state. This is also to be expected when there is
no friction at the bearing plates or when the height H is not
limiting but the spreading length L is limiting being equal
then to the length of the block. On this determining case for
practice the derivation of Eq. A.17 from Eq. A.13 is based
on Appendix A.

The rule of the Eurocode, given in Larsen (1975), Eq.
(4.20), follows from Eq. 1 after scaling to a maximal value
s0. Because fc,s = fc,90

√
L/s and fc,s,0 = fc,90

√
L/s0 it

follows:

fc,s/ fc,s,0 = √
s0/s = (s0/s)0.5 , (2)

with s ≤ s0 = 100 mm. In Larsen (1975), the exponent 0.5
is replaced by 0.4, indicating that a lower ultimate strain is
chosen as ultimate state. This also is the case for the safe
code rules of Canada, Denmark, Norway, Sweden and the
UK. For small values of s (e.g. for pin-dowels) the Weibull
volume effect is noticeable and the value of the draft CIB –
timber code with a power of 0.25 indicates this effect and
the kink in the loading line (by splitting along the grain)
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s/H a/H
≥ 1.5 1 0.5 0

1 2 1.5 1.25 1
2 1.5 1.25 1.12 1
≥ 3 1 1 1 1

Table 2 Values of
kc = fc,s/ fc,90
Tabelle 2 Werte für
kc = fc,s/ fc,90

was chosen as ultimate state. However, because L and hence
H are eliminated in the derivation of Eq. 2, the equation is
not generally applicable. For very small values of H for in-
stance, there is no spreading at all and the equation doesn’t
apply. Furthermore fc,s,0 is wrongly taken to be equal to
fc,90 for s = s0 = 150 mm. Therefore, the right rule, based
on the theoretical Eq. 1, was proposed for the timber code
in the past, e.g. in van der Put (1991) and van der Put and
Leijten (2000).

The French rules, given in Table 2 and mentioned in
Larsen (1975), correctly show the dependence of the
strength on H . The Table shows the boundary value of
a/H = 1.5, mentioned above. When a/H = (L − s)/2H ≥
1.5, thus when L ≥ 3H + s, the maximal spreading is
reached according to Fig. 1. Another boundary of Table 2 is
given for s/H ≥ 3.

It then is assumed, that in the middle of the specimen
the same conditions as in the cube test appear (see Fig. 3).
This applies for fully flexible, frictionless bearing plates.
The same condition in Table 2 is assumed to apply for a = 0
in Fig. 2.

Without friction, spreading is not possible at the edge and
the strength is equal to the strength of the cube test. With
friction along the plates, the confined pressure may e.g. be
build up, even for s = L, according to Fig. 4.

The influence of no friction along the bearing plate in
the strong direction (and thus full friction in the width di-
rection) can be assessed as lower boundary by assuming
that only symmetrical spreading is possible. This is given
in Table 3 where: L = 2a + s. According to Eq. 1 it then is:
kc = √

L/s = √
1 + (2a/H )/(s/H ) in Table 3.

Fig. 2 Locally loaded block
Abb. 2 Probe mit Schwellendruck

Fig. 3 Cube test condition in the middle when there is no friction
Abb. 3 Würfel in der Mitte bei fehlender Reibung

Fig. 4 Slip lines of failure between two plates by friction along the
plates
Abb. 4 Bruchgleitlinien zwischen zwei Platten bei Reibung entlang
der Platten

These values are close to the values of Table 2 of the
French rules and are comparable when a reduction factor is
applied in Table 3 according to:

0.9

(
1.7 1.4
1.4 1.2

)
=

(
1.5 1.25
1.25 1.1

)
.

Thus, when disregarding the limit c = 1 in the first column,
c = 0.9 in columns 2 and 3 is used, the safe lower bound-
aries according to the French rules are indicated.

In Korin (1990), the test results are given according
to Fig. 5, in the range where not H , but L is limiting
for spreading because: L < 2H + s for the central loaded
specimen.

The determination of fc,90 is done on the same specimen,
thus on the specimen of Fig. 5 with an upper loading plate
of length L, the same length as the bottom plate, giving by
this form a higher strength than follows from the common
standard compression test. The ultimate strain was chosen to
be 2.5%. This compression strength was compared with the
strength of the ASTM-bearing test, being the same test as
given by the central loaded specimen of Fig. 5, however with
a length of the upper plate of s = L/3. This explains why the

s/H a/H = (L − s)/2H
≥ 1.5 1 0.5 0

1 2 1.7 1.4 1
2 1.6 1.4 1.2 1
≥ 3 1 1 1 1

Table 3 kc = fc,s/ fc,90 by
symmetry
Tabelle 3 Werte für
kc = fc,s/ fc,90
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Fig. 5 Spreading 1 : 1 in
a central loaded block and
end-loaded block
Abb. 5 Lastausbreitung in einer
mittig und einer am Rand
belasteten Probe

ASTM values of Korin (1990) are
√

L/s = √
3 times higher

than according to the strength of the same specimen with
s = L.

In Table 4, the test results (of a series of three spe-
cimens) are compared with Eq. 1 and it is seen that
also non-symmetrical spreading of end loaded blocks
is possible because of the friction between plate and
specimen.

According to the Eurocode a limiting value occurs at
s/L ≤ 0.125. In this case, it be due to a local mechanism.
The results here however don’t show such an empirical re-
duction of the strength with respect to the theoretical value.
The theoretical limit values due to local mechanisms also
show much higher values of kc. In Table 5, the empirical
value of c of Eq. 1 is given based on the tests in Korin
(1990).

In Fig. 6, the results of tests on two sided locally loaded
long blocks are given.

Measurements Theory
s/L Central loaded End loaded Central loaded End loaded

kc kc Eq. 1: kc = √
L/s

1 1 1 1 1
0.875 1.063 1.063

√
1/0.875 = 1.07

√
1/0.875 = 1.07

0.75 1.188 1.156
√

1/0.75 = 1.16
√

1/0.75 = 1.16
0.625 1.375 1.281

√
1/0.625 = 1.27

√
1/0.625 = 1.27

0.5 1.625 1.438
√

1/0.5 = 1.41
√

(0.5+0.5)/0.5 = 1.41
0.375 1.969 1.625

√
1/0.375 = 1.63

√
(0.375+0.5)/0.375 = 1.53

0.25 2.344 1.875
√

1/0.25 = 2
√

(0.5+0.25)/0.25 = 1.73
0.125 2.781 2.156

√
L/0.125L = 2.8

√
(0.5+0.125)/0.125 = 2.2

Table 4 Values of kc according
to the test-specimens of Fig. 5
Tabelle 4 Werte für kc gemäß
den Prüfkörpern in Abb. 5

Measurements Theory kc = √
L/s

s/L Central End Central End
loaded loaded loaded loaded c-values of Eq. 1

kc kc kc kc c = kc/
√

L/s = kc/
√

L/s

1 1 1 1 1 1 1
0.785 1.063 1.063 1.07 1.07 1 1
0.75 1.188 1.156 1.16 1.16 1.03 1
0.625 1.375 1.281 1.27 1.27 1.09 1
0.5 1.625 1.438 1.41 1.41 1.15 1
0.375 1.969 1.625 1.63 1.53 1.2 1.06
0.25 2.344 1.875 2.0 1.73 1.17 1.08
0.125 2.781 2.156 2.8 2.2 1 1 limit
mean of c 1.08 1

Table 5 Values of fc,s/ fc,90 = kc
and of c = kc/

√
L/s, according

to Table 4
Tabelle 5 Werte für
fc,s/ fc,90 = kc und c = kc/

√
L/s

gemäß Tabelle 4

From the Figure it follows that: s + 3ρH = L + 3.(1 −
ρ)H . Thus:

ρ = 0.5 + L − s

6H

and thus the equivalent spreading factor (of the strength de-
termining plate) is:

L ′

s
= s +3ρH

s
= 1 + 3H

s

(
0.5 + L − s

6H

)
= 0.5 + 3H + L

2s
,

with H = 179 mm; L = 350 mm and b = 181 mm according
to the measurements of Graf it follows:

kc,90 = c

√
L ′

s
= 1.1

√

0.5 + 3H + L

2s

or:

kc,90 = 1.1
√

0.5 + (3 ·178 +350)/2s = 1.1
√

0.5 +442/s

1 3
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Fig. 6 Local loading perpendicular to the grain by Graf in Kollmann
(1984) with assumed spreading
Abb. 6 Querdruckversuche von Graf in Kollmann (1984)

leading to the values of fs at 5 mm deformation (see
Fig. 6) of the curves: 1 : 1.6 − 2 : 3.0 − 3 : 3.6 − 5 : 4.3 −
6 : 5.2 MPa, about the same as the measurements as can be
seen in Table 6. For long blocks with respect to the bear-
ing plates the maximal spreading will occur at both plates
according to Fig. 6 of Graf inKollmann (1984).

The highest maximum is not shown (line 7 of Fig. 6). Pre-
dicted according to the last formula it follows fs = 10 MPa.
However, this may be cut off by a local mechanism. Because

fc,s ≥ 7.5 MPa is measured, the maximum value of kc,90 is
at least 7.5/1.6 = 4.7, near the theoretical value obtained
from a local failure mechanism giving a value of 6.

The measurements of Fig. 6 show a constant loading rate
test with a sudden stress redistribution by instability at the
end of the test. Therefore, the curves 2, 5 and 6 ended at
6 mm or 3.4% strain, so that all the strength was defined at
this strain.

Next, the theoretical explanation of the data in Augustin
et al. (2006) is discussed. According to the theory Eq. 1, the
compression strength perpendicular to the grain of a locally
loaded bearing block increases with a factor kc according
to:

kc = fc,s/ fc,90 = √
L/s .

Because the 1% permanent strain (< 3% total strain) is cho-
sen as ultimate strain, the stress distribution will be close
to the elastic one and a spreading of about 1 to 1 or 45◦
(see Appendix A), can be assumed in Fig. 7. The maxi-
mal spreading at higher strains will be 1.5 to 1. Thus, the
length L will be in case 1 of Fig. 1, L = 200α+150. In case
2 it is: L = 200α+150 +100, and in case 3: L = 2α200 +
150 mm, where α = 1 to 1.5. The length s = 150 mm. For
a specimen height of 480 mm, all values of 200 in the ex-
pressions of L should be replaced by 480.

Thus: case 1: kc = √
L/s = √

(200 +150)/150 = 1.53 to√
(1.5·200 +150)/150 = 1.73, etc.
In case 3 with H = 480, L can not be higher than the

length of the specimen of 980 mm and thus this length is the
real spreading length giving kc = √

980/150 = 2.56.
It can be seen in Table 7 that the measurements are

close to the applied low strain prediction of the theory with
a spreading slope of 45◦ (see Appendix A), giving a good
explanation of the data at the different configurations. The

Fig. 7 Test specimen in Augustin et al. (2006)
Abb. 7 Probe gemäß Augustin et al. (2006)
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Curve s fc,90 kc,90 Theory Measurements Ultimate
(cm) (MPa) fc,s fc,s strain

(MPa) (MPa) 6/178 or:
3.4%

1 18 1.6 1.6 1.6 3.4%
2 18 1.89 3.0 3.0 3.4%
3 12 2.25 3.6 3.3 3.4%
5 7.9 2.72 4.3 4.3 3.4%
6 5.5 3.21 5.2 5.4 3.4%
7 1.4 6.23 10 or local limit > 7.5 > 1%

Table 6 kc,90 = fc,s/ fc,90 =
1.1

√
0.5+44.2/s

Tabelle 6 kc,90 = fc,s/ fc,90 =
1.1

√
0.5+44.2/s

Theory, Measurements Theory, prediction
kc = √

L/s 1% strain 1% strain for high strain
α = 1 α = 1.5

h = 200 mm
case 1 kc = 1.53 kc = 1.58 kc = 1.73
case 2 = 1.73 = 1.94 = 2.24
case 3 = 1.91 = 1.94 = 2.24
h = 480 mm
case 1 kc = 2.05 kc = 1.82 kc = 2.41
case 2 = 2.21 = 2.12 = 2.54
case 3 = 2.56 = 2.46 = 2.56

Table 7 Empirical verification of
the theoretical values of kc
Tabelle 7 Empirischer Nachweis
der theoretischen Werte für kc

higher strain predictions of the theory are in fact verified by
the measurements of Fig. 1.

The discussion of the Weibull volume effect of the bear-
ing or embedding strength fc,s of e.g. pin-dowels can be
found in van der Put (1988) and van der Put and Lei-
jten (2000). This effect should be regarded separately.
The measured value of the power of 0.66 for embed-
ding strength of pins in particle board consists of 0.5 due
to the spreading effect, plus 0.16 of the volume effect
(van der Put 1988).

3 Conclusion

It can be concluded that the theory gives an excellent expla-
nation and precise fit of all the apparent contradictory test
results of Suenson in Kollmann (1984), the Eurocode and
the French rules in Larsen (1975), Graf in Kollmann (1984),
Korin (1990) and Augustin et al. (2006) in all circumstances
and loading cases.

Therefore, the proposal of the past (van der Put 1991,
van der Put and Leijten 2000) remains to use the right de-
sign rules for the codes, based on the theory as necessary,
leading to the following rules for bearing blocks for the
Eurocode:

σc,90,d ≤ kc,90 fc,90,d ,

where:

kc,90 = √
L/s with: L ≤ a + s+ l1/2; L ≤ 3H + s and:

for safe rules (when friction is only in the width direction),
the conditions are:

L ≤ 2a + s; L ≤ s + l1; L ≤ 2H + s ,

l1 is the intermediate distance between two local loads, (like
in the code proposal).

For the bearing strength of a middle section of a beam
between two plates of lengths L and s, it is

kc,90 = 1.1

√

0.5 + 3H + L

2s
≤ 5 .

Appendix

A Derivation of the bearing strength perpendicular
to the grain of locally loaded blocks
and of the spreading equation by the method
of characteristics

The dependence of the strength upon spreading can be ex-
plained by the equilibrium method of the theory of plastic-
ity. In the plastic region, a stress field can be constructed in
the specimen that satisfies the equilibrium conditions:

∂σx

∂x
+ ∂τ

∂y
= 0 and

∂τ

∂x
+ ∂σy

∂y
= 0 (A.1)

and the boundary conditions and surmounts the failure crite-
rion Eq. A.2 nowhere.

In Eq. A.1, σx and σy are the normal stresses in x- and y-
directions and τ is the shear stress. As failure criterion, an
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inscribed Tresca criterion within the von Mises criterion of
the isotropic matrix, Eq. A.2 can safely be used

(σ1 −σ2) /2 = k = fv , (A.2)

where σ1 and σ2 are the principal stresses.
This failure criterion applies after a flow and hardening

stage in the weak directions until quasi isotropic flow be-
haviour occurs (of the matrix) followed by further hardening
and flow (van der Put 1982). In Fig. 8, the Mohr-circle of
the failure condition is given with the general stress state
σx, σy, τ . In Fig. 8 it is:

p = (σ1 +σ2)/2 and k = (σ1 −σ2)/2 . (A.3)

In general it is: p = σy + k cos 2ψ = σx − k cos 2ψ

and τ = k sin 2ψ ,

where ψ is the slope of the plane of σ2. Substitution of these
equations of σx, σy, τ in the equilibrium equations gives

∂p

∂x
−2k sin 2ψ

∂ψ

∂x
+2k cos 2ψ

∂ψ

∂y
= 0 (A.4)

∂p

∂y
+2k cos 2ψ

∂ψ

∂x
+2k sin 2ψ

∂ψ

∂y
= 0 . (A.5)

Multiplication of Eq. A.5 by tan(ψ −π/4) and then addition
with Eq. A.4 gives:

∂a

∂x
+ tan(ψ −π/4)

∂a

∂y
= 0 , (A.6)

where a = p−2kψ. Thus, along the line (the characteristic)
with slope

dy/dx = tan(ψ −π/4) , it is a = constant .

Fig. 8 Tresca failure condition
Abb. 8 Bruchkriterium nach Tresca

The same can be done by multiplication of tan(ψ +π/4),
leading to

∂b

∂x
+ tan(ψ +π/4)

∂b

∂y
= 0 , (A.7)

giving b = p+2kψ = constant along the characteristic with
dy/dx = tan(ψ +π/4).

In van der Put (2006b) it is shown that these lines are real
characteristics and the slopes of both orthogonal character-
istics thus are:

dy

dx
= tan

(
ψ + π

4

)
and

dy

dx
= tan

(
ψ − π

4

)
, (A.8)

while along the first the second characteristic applies,
respectively:

p −2kψ = a = constant (A.9)

p +2kψ = b = constant . (A.10)

Calculation of the network of these slip-lines is done numer-
ically. This is discussed in van der Put (2006b). In Fig. 9, θ

increases with the increase of H and as a result of the nu-
merical construction of the slip-lines, discussed by Schwartz
(1969), this increase appeared to follow precisely the empir-
ical analytical function:

θ ≈ 0.62 ln(2H/s) (A.11)

This can be explained as follows. At the end of the outer
curved slip-line, over a length Rdφ, according to the rope-
equation N dφ = σRdφ or N = σR, where N is the normal
force along the slip-line. Further d N = τRdφ, or σ d R =
τRdφ, or d(ln R)/dφ = τ/σ = c and thus R = R0 exp(cφ),
what is a logarithmic spiral. Now it follows:

RL

Rs
= H

s/2
= exp (c(θL − θs)) = exp (1.61θt)

Fig. 9 a Construction of the slip lines, b Outer slip lines
Abb. 9 a Konstruktion der Gleitlinien, b Äußere Gleitlinien
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or:

θt ≈ 0.62 ln (2H/s) .

It thus is shown that Eq. A.11 is not an approximation but
the true solution for the end point of the outer slip-lines.

Triangle ABD of Fig. 9 is a region of constant state,
where the maximum shear lines, or characteristics, are ev-
erywhere at 45◦ to the principal directions because of the
uniform compression load on plane AB. Because now, the
pole of the planes in the Mohr circle is at point σ2 in Fig. 8,
ψ = π/2. This direction of the plane with the minor prin-
ciple stress is also the direction of the highest principle
compression stress.

From point D or 11′ in Fig. 9 and 10 to point 2 follows:

ps −2k
π

2
= p2′ −2k

(π

2
+α

)
. Thus: p2′ = ps −2kα .

From point 2′ to 22′ it follows:

p22′ +2k
π

2
= p2′ +2k

(π

2
−α

)
.

Thus: p22′ = p2′ −2kα = ps −4kα and: ps = p0 +4kα .

The same relation follows for point 33′, when the angle be-
tween line BD, and BC (at point B) is 2α: ps = p0 +4k(2α).
Thus in general it is:

ps = p0 +4kθ . (A.12)

Inserting Eq. A.11 and with ps = (σs +σs −2k)/2 = σs − k
and p0 = σ0 − k, this is:

σs = σ0 +2.48kln(2H/s) (A.13)

and because σss = σ0 L (see Fig. 11) it follows: σs(1 −
s/L) = 2.48k ln(2H/s). Further elastic spreading will be at
an angle of 45◦, thus for initial (small) flow, L ≈ 2H + s, or:

H ≈ (L − s)/2 when H > s , thus: L/s > 3 .

Fig. 10 Determination of p and ψ in the p–2kψ plane
Abb. 10 Bestimmung von p und ψ in der p–2kψ Ebene

Fig. 11 “Slip-lines” determining the direction of the main stresses
Abb. 11 ,,Gleitlinien“, welche die Richtung der Hauptspannungen
bestimmen

Substitution of the values for σ0 and H in Eq. A.13 gives:

σs = 2.48k ln

(
L

s
−1

)
L/s

L/s −1
(A.14)

and because from the power law approximation follows that
ln

(
L
s −1

) L/s
L/s−1 is proportional to

√
L/s, (see Appendix B),

Eq. A.14 becomes:

σs = 2.48kC
√

L/s , (A.15)

where C = (
√

L/s/(L/s −1)) ln(L/s −1) ≈ 0.78 .

Thus:

σs = 0.97 ·2k
√

L/s ≈ 2k
√

L/s . (A.16)

The value of k follows from the compression test (cube test)
with σ1 = fc,90 and σ2 = 0 or: k = fc,90/2. Thus Eq. A.16
becomes:

fs = c fc,90

√
L/s ≈ fc,90

√
L/s . (A.17)

The higher experimental value of c given in Table 5 shows
the lower boundary approach of the chosen method (the real
slip-lines must give a higher value). Thus c gives the possi-
bility to adapt the model to test results.

A similar solution is possible for the rotational symmet-
rical case with a special value of the intermediate principal
stress, leading to the extension of Eq. A.17 to the surfaces
As (πs2/4) and AL (πL2/4). Thus generalized to every sur-
face form:

fs = c fc,90

√
AL/As . (A.18)

It is shown in van der Put (2007) that the isotropic matrix of
wood is determining the failure. Thus, the initial flow stress
after elastic deformation at the bottom of the block where
the outer slip lines cross each other in Fig. 11 is found by
a spreading angle of 45◦ of the load at plate “s” because then
the mean spreading stress is equal to the maximal stress in

1 3
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this point according to the theory of elasticity. Due to hard-
ening, the real maximal slope is 1.5 to 1 after huge plastic
deformation where the maximal loading is reached.

B Derivation of the power of the spreading equation

The part of Eq. A.14 found in Appendix A: (1.24(L/s)
ln(L/s − 1))/(L/s − 1), appears to follow the form of√

L/s. This follows from the power law approximation
of Eq. A.14. Any function can be approximated around

a point x0 by: f(x) = f(x0).
(

x
x0

)m
, with: m = f ′(x0)

f(x0)
, giving

a power m = 0.5. It thus is possible to split Eq. A.14 into:
√

L/s
(

1.24(
√

L/s) ln(L/s −1)
)

/(L/s −1) = √
L/sC ,

because the second part should be about constant.
The special value of 0.5 of the power can be explained as

follows. In the following derivation, the strengths of the up-
per and bottom planes will be related to the strength of an
intermediate plane “me”, having a strength according to the
power law representation (analogous to Eq. A.18):

σm = σc

(
Lt

me

)n

.

Thus from:

σmme = σL Lt → σL = σm
me

Lt
= σc

(me

Lt

)1−n

for the bottom plane. It also is for the upper plane: σs =
σm

me
ts = σc

(
Lt
me

)n me
ts = σc

(
Lt
me

)n−1 L
s .

With: me = αts

is: σL = σc

(me

Lt

)1−n = σcα
1−n

( s

L

)1−n

and it is: σs = σcα
1−n

(
L

s

)n

.

In general, Eq. A.1 is: f(x) = f(x0).
(

x
x0

)m
, for x = x0

s
L ,

equal to: σL = σcα
1−n

(
s
L

)1−n
and for x = x0

L
s , equal to:

σs = σcα
1−n

(
L
s

)n
.

Because the exponent gives the slope of the curve and the
curve should not be kinked at x0, the exponents should be
the same and: m = 1 −n = n, or n = 1/2.

For α = 1, the intermediate plane is the determining up-
per plane

Open Access Dieser Artikel wird zu den Bedingungen der “Cre-
ative Commons Attribution Noncommercial License” zur Verfügung
gestellt. Damit ist eine nichtkommerzielle Nutzung, Verbreitung und
Vervielfältigung erlaubt, sofern die Autoren des Artikels und die
genaue Quelle angegeben sind.
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